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1 SUMMARY

A computer program is described which is especially suited for making
vibration and buckling calculations for prestressed lattice structures that
might be used for space application. Structures having repetitive geometry
are treated in a very efficient manner. Detailed instructions for data input
are given along with several example problems illustrating the use and
capability of the program.

2 INTRODUCTION

BUNVIS-RG (BUckling or Natural Vibration of Space frames with Repetitive
Geometry) is a FORTRAN 77 computer program with approximately 11,000 lines of
coding, which uses the stiffness matrix method and exact member theory. It
finds the eigenvalues, i.e. the critical load factors in buckling problems or
the natural frequencies in undamped vibration problems, with the option of
finding the corresponding mode shapes. It covers three-dimensional frames
consisting of uniform beam-column members and/or taut strings. Special care
has been taken to account for rigid body modes and prestressing, so that
frames in space can be analyzed. An optional static analysis provides the
internal member forces that are needed by the eigenvalue analysis. The
eigenvalue results are exact in the sense that the beam—-column member
equations used were obtained by solving the governing differential equations
of Timoshenko theory to allow for the effects of axial force and shear
deflections and, additionally in vibration problems, of distributed mass and
distributed rotatory inertia. Dramatic computational savings can often be
obtained by using the exact repetitive geometry and substructuring features of
the program. The former enables structures which are repetitive in any number
of coordinate directions, including rotational periodicity, to be treated by
solving an eigenvalue problem of the size associated with the repeating
portion of the structure.

BUNVIS-RG has been developed from the earlier program BUNVIS (ref. 1),
which was not made generally available although it is a well tested research
program which was developed at UWIST (The University of Wales Institute of
Science and Technology) and has been used for several years both there and at
the NASA-Langley Research Center., BUNVIS-RG was principally developed at
Langley, with collaboration from UWIST, by adding repetitive geometry and many
practical features, such as the preliminary static calculations, automatic
node renumbering to reduce bandwidth, a "user friendly" data preparation
scheme, plotting, flexible joints, and offset connections at nodes. All such
features are treated exactly for eigenvalue problems, whereas conventional
finite element programs usually make some approximations unless additional
nodes are added.

*

BUNVIS-RG is available to US users from COSMIC , and to other users from
the second author. The principal aims of this manual are to describe the
program's capabilities and to present the user instructions necessary for its
application. Example problems are given to illustrate specific input
requirements and timing estimates as a function of problem size are developed.
To avoid obscuring the primary aim of the manual, the novel aspects of the
theory are given in separate publications which are cross-referenced.

*COSMIC, Computer Services Annex, University of Georgia, Athens, GA, 30602




3 MAIN FEATURES OF BUNVIS-RG

BUNVIS-RG uses exact member theory for beams and taut cables which
accounts for distributed mass and axial force correctly, and finds selected
eigenvalues by using a theoretically established algorithm (refs. 2 - 4) which
ensures that none are missed. The algorithm involves a stiffness matrix that
is a function of the eigenparameter, i.e. of the frequency or load factor.
Gauss elimination is applied to this matrix at a trial value of the
eigenparameter to enable the algorithm to determine the number of eigenvalues
exceeded, and this is repeated for successive trial values of the
eigenparameter. In previous applications these trial values have often been
chosen by a bisection routine. However, BUNVIS-RG has a new accelerated
convergence routine which uses the determinant of the stiffness matrix and
which retains the certainty of the algorithm while being about twice as fast
as bisection. The program can account for the effects of axial forces on the
flexural vibrations of members, so that natural frequencies can be found for
loaded structures. The axial forces can be given as data, or can be found
from preliminary static calculations which include the combined effects of
external loads applied at the nodes (i.e. joints), acceleration such as
gravity and axial member preloads or prestrains. BUNVIS-RG can allow for: any
topology of a three-dimensional frame; rotatory inertia and shear deflection
of members; unequal principal second moments of area of cross-sections of
members with arbitrary alignment of principal axes; generally tapered members
with varying axial load; elastic connections between members and nodes; offset
connections between members and nodes; cylindrical or Cartesian coordinates;
and nodes which have lumped masses and/or lumped rotatory inertias and/or
elastic or rigid supports. In addition, BUNVIS-RG can: find buckling or
vibration mode shapes; plot such mode shapes and the undeflected shape of the
frame; give greatly reduced solution times for structures which are linearly
and/or rotationally repetitive; include members with any combination of
stepped and smoothly varying properties by a general substructuring
capability; and include stayed columns in a frame by using a special purpose
but very efficient substructuring capability. The remainder of this section
gives details and references where needed to define the theoretical aspects of
the above features. An important contrast with finite element programs is
that exactness is retained by all these features (except for the general
tapered route where the member is approximated by a user selected number of
uniform elements to generate a set of substructure stiffnesses for the
complete member)., There is no need to introduce extra nodes or members even
for the highest eigenvalues because the member theory retains the infinite
number of degrees of freedom, and hence of eigenvalues, of the real structure.

3.1 Member Theory

The member equations used are the classically exact ones obtained by
solving the appropriate differential equations. The stiffness coefficients
which result are functions of the axial force in the member,. and are also
functions of frequency in vibration problems. The expressions used for the
stiffness coefficients of a taut string are those given in reference 5. The
remaining stiffness coefficients are essentially those given in references 6
and 7 for vibrations of an axially loaded Timoshenko beam. These have the
data triggered option of omitting any combination of frequency, axial force,
rotatory inertia and shear deflection. Thus static and Bernoulli-Euler
stiffnesses are included.




3.2 Convergence on Eigenvalues

BUNVIS-RG can find: a set of data-specified eigenvalues, such as the
first and the third, where the first is the fundamental; all eigenvalues
between specified values of the eigenparameter, e.g. to find all the natural
frequencies in a frequency band; or the number of eigenvalues (and hence the
modal density) in each of the equal intervals between evenly spaced values of
the eigenparameter. The options all use the theoretically proven algorithm
described above, that guarantees successful convergence on all the required
natural frequencies of (dead) loaded structures (ref. 2), or on the critical
load factors of structures subjected to a dead (i.e. constant) load system and
to a live load system which is scaled by the load factor (i.e. proportional
loading) (ref. 3). The simplest route in BUNVIS-RG assumes that the dead or
live load systems can be approximated adequately by the axial forces which
they cause in the members, and that these axial forces are known a priori and
constitute the dead and live load data. The alternative routes involve the
static calculations described in section 3.3.

3.3 Static Loading, Including Prestress and Acceleration

For buckling and vibration problems, BUNVIS-RG can calculate the dead
load axial forces caused in the members by any combination of externally
applied static point forces and moments at the nodes, axial preload or
prestrain in the members, and acceleration loads such as those due to gravity.
This is done by replacing the preloads, prestrains and acceleration forces by
equivalent static point forces at the nodes, adding these to the externally
applied forces at the nodes, and then solving by the usual static stiffness
matrix method. The live load axial forces can be found similarly, except that
acceleration is not included.

Such preload and prestrain calculations in effect assume that the
structure is assembled with the preloads and prestrains in its members given
by data and its nodes clamped, and that the nodes are then released to
distribute the prestress through the structure. Gravity, or any other
acceleration loading of a structure, is accounted for by sharing the mass of
each member or substructure according to its center of gravity location
between the nodes at its ends and converting to forces by using the
appropriate acceleration. The acceleration is specified by giving its
components in the three principal coordinate directions so that acceleration
in any direction can be treated.

The static stiffness matrix is a function of the initial axial forces in
the members, which are supplied as data. When dead load and live load axial
forces are given in data they are added together with the latter scaled by the
initial load factor. Hence the most accurate results are obtained when these
axial forces are close approximations to the final axial forces in the
members.

The static loading calculations should alter the dead and live load
axial forces in members within a stayed column substructure from those given
in data, but at present this calculation is not performed. (However, the end
load on the stayed column is calculated and could be used to find the axial
forces in its members, e.g. by a separate BUNVIS-RG run.)




3.4 Dead Load and Rigid Body Modes

It is meaningless to find natural frequencies of a buckled structure
using linear theory, and similarly the algorithm used (ref. 3) to find
critical buckling loads of structures subjected to dead and live loading pre-
supposes that the structure is stable when the dead load is applied alone.
Therefore, for both vibration and buckling problems, a preliminary calculation
is performed which uses the algorithms of references 2 and 3 to check that the
structure is stable under the dead load alone. This check can fail when rigid
body freedoms exist, unless precautions are taken. Therefore, BUNVIS-RG
allows a single data-specified small stiffness (SMASPR) to be added (after
appropriate scaling, see section 4.6.4) to all three translational freedoms at
every node of the structure. Suitable choice of this stiffness leaves the
eigenvalues essentially unaltered, while replacing the rigid body modes by
very low eigenvalues which need not be computed. However, the presence of
even quite small implied external loads at the nodes must then be avoided
because they could make this structure unstable. Such loads would result if
the dead load axial forces are not close enough to being in equilibrium at the
nodes. This happens if the axial forces used are those given in data, and the
forces and/or geometry are not given to high accuracy. It would also usually
happen if the axial forces are calculated by the program (see section 3.3)
because such calculations include the shear forces, so that the axial forces
alone will not usually be in equilibrium at the nodes.

To avoid this static instability problem, the program has three options
which may be employed for structures that have rigid body degrees of freedom.
The choice depends on the type of structure. For a structure that is
redundant, and is not a mechanism when modeled as a pin connected truss, the
static analysis may be performed on this basis to yield axial forces that are
in equilibrium. If the user is satisfied that these forces differ very little
from those found using the full member stiffnesses, the error in the
subsequent eigenvalue calculation based on the full member stiffnesses should
be small. If this approach is not suitable but shear forces from the stress
analysis are reasonably small, an alternative approach is to specify a small
quantity (PDELTA) in the input which increases all tension loads and decreases
all compression loads by PDELTA times their correct values. If a value of
PDELTA can be found that will result in a net tension across the structure, no
instability will occur. The error in any eigenvalue calculated this way when
expressed as a ratio to the correct eigenvalue is usually less than PDELTA.
For some structures, large shear forces are required to provide equilibrium
and neither of these approaches would work. For this case, the program has
the option of adding the effect of static member shear force to its usual
member equations (refs. 6, 7), which already allow for the static axial force.
To do this, the terms +Q/L are added in appropriate locations of the member
stiffness matrix, where Q is the static shear force and L is the length of the
member. For buckling problems, Q includes the live load scaled by the current
value of the load factor. The theoretical basis of the additions to the
stiffness matrix can be deduced by fairly simple arguments, or can be deduced
more rigorously from reference 8. This approach is an approximation which
does not remove the static instability in all cases and should be used with
caution. Since internal loads of stayed column substructures are not
recovered from the stress analysis to be used in subsequent eigenvalue
analysis, a similar correction is made involving the change in axial load that
was determined from the stress analysis.




3.5 Mode Finding

Modes are found by a random force vector method. This method is the
"PR method” which was advocated and evaluated in reference 9. Briefly stated,
it zonsists of solving the equations (stiffness matrix of the structure) x
(displacement vector) = (force vector), with the elements of the force vector
given random values and with the stiffness matrix evaluated at a close
approximation to the eigenvalue. When mode shapes are calculated for several
coincident eigenvalues, the program finds a mode for each by the expedient of
using a different random force vector in each case.

3.6 Use of Core Storage and Resequencing of Nodes

BUNVIS-RG is an in-core program (except for data handling, plotting
and, optionally, for the static loading calculations of section 3.3 and mode
finding) which was written to keep the amount of coding and the core store
requirement (for data and working space combined) as small as was reasonably
possible while also keeping execution time near optimum. Thus it employs a
fixed bandwidth method which only stores the active triangle of the band
during assembly and Gauss elimination, as described in connection with
figure 2 of reference 10. This results in low working space requirements, but
if modes are required, the entire upper half band of the stiffness matrix must
be stored. The user has the option of doing this in core or with the use of
backing store depending on problem size and storage available. Virtually all
the array space needed is contained by three one~-dimensional arrays, which
store the integer, real and complex numbers of the data and working space
without gaps. Working space is minimized by re-using it whenever possible.

Because solution time and storage are bandwidth dependent, BUNVIS-RG
incorporates the program BANDIT (ref. 11) to give the option of reducing the
bandwidth. The BANDIT program uses both the Cuthill-McKee (ref. 12) method
and the Gibbs—-Poole-Stockmeyer (ref. 13) method. The four options for
resequencing contained in the original BANDIT program are retained and are:

option criterion

1 rms wavefront
2 bandwidth

3 profile

y max wavefront

Option 2, reduction of bandwidth, is usually the best suited for BUNVIS-RG and
is the default value in the program. For discussion of the other options see
references 11-13. For many problems the minimum bandwidth is achieved by
BANDIT, but the method does not always result in a minimum when the topology
is complicated.



3.7 Stayed Columns

An important feature of BUNVIS-RG, which accounts for about 250 lines of
coding, is the inclusion of a very efficient (i.e. low store requirement and
fast execution), exact, sybstitute column method (ref. 14) for handling stayed
columns as substructures. These stayed columns are symmetric about their
mid-length and consist of a central core with N=3,4,5..... identical stay
frames equally spaced round it as shown in figure 1(b). The stay frames can
consist of any combination of beam-columns and taut strings (i.e. stays) which
lie in a plane, but stay frames are not inter-connected except where they are
connected to the core. Thus figure 1(a) shows a typical stayed column, which
can be represented in data merely by the representative half frame of figure
1(c). An example of the efficiency of this substructure approach was given in
reference 15 where a frame with almost 22000 degrees of freedom (considering
all the nodes in the stayed column substructures) was treated in a modest
amount of computer time.

3.8 Repetitive Geometry

Frames which contain a group of nodes and members which repeats in one
or more coordinate directions may be analyzed using the repetitive feature of
the program. The size of the problem analyzed is only that corresponding to
the repeating portion of the frame but results are applicable to the complete
frame. Figures 2 and 3 illustrate large repetitive structures that have been
analyzed by using this repetitive geometry feature. In general BUNVIS-RG
handles linear repetition in any combination of one, two (see figure 2) or
three Cartesian directions, and also handles rotational periodicity (see
figure 3) with the option of linear repetition in the direction of the axis of
rotation.

The detail of the repetitive geometry method is given in full in
reference 16 with the theory in the appendix for a central node replaced by
the alternative and more general approach of reference 17. Briefly, this
method requires that the response mode be repetitive over a certain number of
bays in each coordinate direction as given by equation (2) of reference 16 as

D‘j = D0 exp[2i1r(n1,]1/N1 + anZ/N2 + n3J3/N3)] (1)
where D, is the displacement vector in the jth repeating portion located j
bays inJeach coordinate direction from the structure actually modeled. The
mode repeats in each coordinate direction in N,, bays for k = 1, 2, 3. The nk
are harmonics of response which must cover the range ’

n =0, tl, 2, ..., iinteger(Nk/2) (2)
to ensure that all possible independent responses are accounted for. For

structures repetitive in only one direction, negative values. of n, need not be

%

Reference 14 gives several variants of the substitute column method. The one
used in BUNVIS-RG is particularly efficient, being that described around
figure 3 of reference 14, in the form in which three degrees of freedom are
allocated to every node and are chosen to permit whichever of in-plane or out-
of-plane deflections of each stay frame of the types I, II_ or II, substitute

a b
columns is required by the theory.




considered. For structures repetitive in two or three directions, negative
values of n,_ need not be considered for one direction, but both positive and
negative vafues must be used for the remaining directions. A more complete
discussion of these requirements is given in reference 16.

Introduction of equation (1) results in complex quantities which are
eventually incorporated into the stiffness matrix in the analysis. The
program uses the complex arithmetic feature of Fortran to implement the
solution. For nonrepetitive structures, the stiffness matrix is real. To
account for this, it is possible to compile two versions of the program, a
real arithmetic version for regular problems and repetitive problems with a
harmonic response of 0, or N, /2 when N, is even, and a complex arithmetic
version for general repetitive problems. The complex version will work the
regular problem but with a factor of approximately three to five penalty in
time depending on the machine and compiler used. The only difference between
the two versions is one line of code declaring certain variables to be complex
which is omitted in the real version. This line is identified with a comment
card in the source code.

The program is particularly useful for structures having rotational
periodicity, where the mode inevitably repeats in the circumferential
direction. Alternatively, for structures of finite size which are repetitive
in rectangular coordinates and which have simply supported boundaries and
appropriate symmetry in geometry and loading, solutions can be obtained by
assuming a mode that is repetitive over twice the length of the actual
structure. Moreover, even if symmetry and boundary condition requirements are
not satisfied so that the assumed mode shape will not be compatible with the
actual supports, the results for wavelengths that are small relative to the
length of the structure may still help the analyst.

It is apparent from the number of nodes for the full structures of
figures 2 and 3 compared with the number of nodes for their repeating
portions, that computer time and storage savings must be very great for the
analysis of these structures using the repetitive feature of the program. The
repetitive geometry method gives exact results for rotationally periodic’
structures. It also gives exact results for the spatially sinusoidal response
of linearly repetitive structures. Such results will be exact for structures
with boundary conditions which are compatible with a suitably chosen set of
sinusoidal responses and otherwise can give useful approximations. The
inclusion of rotationally periodic space frames with members along their axis
of periodicity needed an extension of the original algorithm for ensuring
convergence on all required eigenvalues, which reference 17 shows is valid for
any rotationally periodic structure.

3.9 Elastic and Offset Connections Between Members and Nodes

By default, the program assumes that the center-lines of members pass
through any node to which they are connected and that all six degrees of
freedom (three translations and three rotations) are rigidly connected to the
node. Alternatively, any combination of the six freedoms (in member co-
ordinates) at each end of a member can be elastically connected to the node.
Reference 18 gives details of the simple and efficient way in which these
elastic connections are introduced one at a time so as to retain the exactness
of the results and the certainty of the algorithm which ensures that no




eigenvalues are missed. Zero elastic stiffnesses can be used to obtain pinned
or sliding connections. Offsets, i.e. eccentric connections between a member
and a node, can also be applied, using a standard transformation, in any
combination of the three Cartesian global axis directions. Alternatively, the
offsets can be defined using a local set of member axes. ‘Note that when
elastic connections and offsets are both present the former are applied to the
member first. Thus, if the offsets are visualized as rigid links between the
ends of the members and the nodes, the elastic connections are between the
members and the rigid links, which are always rigidly connected to the nodes.

3.10 Tapered, Stepped, or Non-Uniform Members

BUNVIS-RG includes exact Bernoulli-Euler theory member equations for
tapered members which have taper such that their axial and flexural rigidities
vary according to, respectively,

E)n Z,. n+2

3 and EI = Equ + ¢+) (3)

EA = EAO(1 + C I

with n =1 or 2, and ¢ > -1, where z is measured from one end of a member of
length L. The mass per unit length varies as EA and the twisting stiffness
and polar moment of inertia vary as EI. The expressions used for the
individual member stiffnesses are explicit ones which involve Bessel
functions. They only cover either vibration of members which do not carry
axial load (ref. 19) or static behavior of axially loaded members (ref. 20).
Thus they can be used for vibrating frames in which the tapered members are
unloaded, or for buckling of frames.

BUNVIS~RG also includes a substructuring route which automatically
generates a stepped beam which can represent a non-uniform member as any
required number of rigidly jointed uniform members. These uniform members are
analyzed by the Timoshenko beam-column theory described earlier in this
manual, and their principal properties can be varied independently of each
other between successive uniform members to follow profiles along the length
of the non-uniform member which are given in data as algebraic curves. The
data required by the program is very concise, and an extra data input
refinement makes it even more so for profiles which satisfy equation (3).
Thus tapered members which satisfy equation (3), but do not satisfy the
requirements stated in the paragraph which contains it (e.g. the beam is an
axially loaded vibrating one, n > 2, or Timoshenko theory is needed), require
only a minimum of input data.

The substructuring facility also allows any number of uniform Timoshenko
beam-columns and/or any combination of tapered or non-uniform members of the
kinds already described in this sub-section, to be rigidly or elastically (but
293 eccentrically) connected in a straight line to form any tapered, stepped
or generally non-uniform beam-column for which flexure in the two principal
planes, axial response, and torsional response are all uncoupled. Such
uncoupling is also assumed throughout the analysis described earlier in this
section, so that all substructuring uses minimum bandwidth substructure
stiffness matrices by considering separately in-plane flexure in each of the
two principal planes, axial behaviour and torsional behavior.




3.11 Estimating Solution Times

The solution time to find eigenvalues without modes, T, is the product
of the number of iterations taken by the convergence routine, I, and the time
taken per iteration, Ti' Thus

T=1IxT; (4)

A stress analysis takes one iteration plus the time required for back
substitution to determine the deflections from which the internal forces are
determined. For eigenvalue analysis, the value of I depends on the problem
and can only be estimated from experience. Thus I typically depends upon the
number of eigenvalues sought, the accuracy to which they are required, and
whether they occur in clusters of close or coincident values. As a rough
guide, the accuracy required for reasonably accurate mode shapes is .001%.
For this accuracy, I will receive a contribution of about eight for each well
Separated eigenvalue where the accelerated convergence procedure is used, and
a contribution of about sixteen for each group of coincident eigenvalues where
bisection must be used. For each mode shape calculated in-core, I will
receive an additional contribution of between 1 and 2. However the accuracy
of a mode is frequently much less than that of its eigenvalue, so that extra
iterations may be needed to improve the accuracy of the mode by finding the
eigenvalue more accurately.

A fixed bandwidth method is used to perform the Gauss elimingtion,zwhich
can therefore be assumed to take a time which is proportional to B (N - =B)
where N is the number of nodes and B is the bandwidth defined as one greater
than the maximum node number difference of any pair of connected nodes. The
Gauss elimination time dominates T, when B is large, but the calculation of
member stiffnesses and their trans%ormation to global axes can also be
significant if B is small. Therefore for frames with uniform beam-column
members (and without stayed columns or tapered, stepped or non-uniform
members) Ti can be estimated from

2 2
T;= aB7(N - 3B) + BM (5)

where M is the number of uniform beam-column members in the frame and a and B
are dependent on the machine and compiler used and upon whether the real or
complex program is used. A number of runs (described in more detail in
reference 21) on structures having a wide range of B, M, and N resulted in the
following values for a and B

Real Complex
Computer a ] a B
VAX-11/780 (UWIST) 0.00164 0.0145 0.00843 0.0157
VAX-11/780 (NASA) 0.00251 0.0181 0.00951 0.0194
CDC-CYBER 855 0.000191 0.00337 0.000450 0.00345

An estimate of the time required for an iteration is calculated from equation
Note that the VAX times are different for the

(5) and printed for each run.
Users may wish to develop their own values of a and 8

two installations.

based on their own experience and change the values that are given in the
source code. The value of B is increased by the presence of tapered or



stepped members and decreased for members having equal rigidities, members
aligned with principal axes, members connected to earth nodes, and members in
a plane frame. For further details on timing, see reference 21.

4 INPUT DATA PREPARATION

Some of the more significant features of BUNVIS-RG which a user should
be aware of in preparing input are summarized in the following list.

Rectangular and cylindrical coordinates

Stress analysis for external loads with automatic inclusion of
acceleration and gravity loadings

Preloaded or prestrained members such as due to temperature can be
included in the stress analysis

Repetitive geometry

Members having unequal principal moments of inertia

Tapered and stepped members

Members offset from nodes

Members having spring connections to nodes including pinned or sliding
connections

Stayed column substructures

Plotting of undeformed structure and mode shapes

This section presents general aspects of the required modeling followed
by a detailed description of the input. Groups of numerical data are
generally preceded by a descriptive heading card. Only the first two or three
letters of these cards are usually required by the program; the actual letters
required are indicated in the following text by capitals.

4.1 Coordinate Systems

The global axes form a right hand system which may be rectangular (x, y,
z) or cylindrical (r, 6, z). The integers 1, 2 and 3 are used respectively to
indicate forces or displacements along these axes for several input quantities
and similarly 4, 5 and 6 are used to indicate moments or rotations about these
axes. The sign convention for moments or rotations follows the usual right
hand rule. The local member coordinate system is a right hand rectangular one
oriented with respect to the global system as shown in figure 4. The positive
z axis is along the member in the direction from the lower numbered node
(initial end) to the higher numbered node (final end). The local x and y axes
are defined as indicated in figure 4 with a complete explanation of the rules
given in the definition of CT in the SECtion data card group. Default values
are such that the local x axis lies in a plane normal to the global z axis.

4,2 Stress Analysis

A stress analysis may be made in order to calculate the individual
member axial forces to be used in the subsequent buckling or vibration
analysis. The stress analysis includes the combined effects of external
loading at any node (point forces and moments and the automatic inclusion of
acceleration or gravity loads at nodes if desired) and members having preloads
or prestrains such as due to temperature. The stiffness matrix used in the
stress analysis may include the effect of member axial force, see section 3.3.
The results of the stress analysis are the axial and shear forces and bending

10




and twisting moments at the ends of each member. In subsequent eigenvalue
analyses, the member axial force is accounted for directly in the member
stiffness matrix except for stayed column substructures. The effect of member
axial force for stayed column substructures and the effect of shear forces can
be approximated in the eigenvalue analysis as described in section 3.4. These
effects may be switched on by setting IQL = 1 after a RESet card. For tapered
or stepped substructures that appear in more than one location, only one
substructure stiffness matrix is used which is determined from the axial load
for the first occurrence of the substructure. If the structure is repetitive,
the loadings are the same in all repeating elements (i.e. they correspond to
the zeroth harmonic) no matter what harmonics are used in the subsequent
eigenvalue analysis.

4.3 Modeling Repetitive Structures

A structure that has repetitive geometry can often be analyzed at
greatly reduced time and cost in BUNVIS-RG if the repetitive feature of the
program is utilized. The capabilities and limitations of such an analysis are
discussed in section 3.8. The first step in preparing data for a repetitive
structure is to identify the repeating portion, which contains a group of
nodes and members which repeats in one or more coordinate directions. This
group of nodes and members is defined as the basic repeating portion:. Every
node in each repeating portion is given the same number as its counterpart in
the basic repeating portion. The difference in coordinates of a node and its
counterpart in the next repeating portion is the bay width in that direction
and is input in the BAY information group as the quantity ZJ(I), where I =1,
2 or 3 corresponding to the three global axes. The number of bays over which
the mode shape repeats must be given in the same card group as EN(I). The
desired response harmonics as discussed in section 3.8 are specified in the
MODe card group. The nodes may be numbered in any order keeping in mind that
efficiency is increased by minimizing bandwidth. The nodes may be resequenced
to reduce bandwidth by the input of the BANdwidth card. The basic repeating
portion is modeled just as for a nonrepetitive structure with the additional
requirement that the lower numbered of the two nodes connected by a member (or
substructure) must be in the basic repeating portion, whereas the higher
numbered node can be in the basic repeating portion, or can be in any other
repeating portion. (In which case this node number can duplicate the lower
numbered node to permit a node in the basic repeating portion to be connected
to its counterpart in any other repeating portion.)

4.4 Modeling Stayed Column Substructures

Stayed columns that are symmetric about their mid-length and have a
central core with N = 3, 4, 5, ... identical stay frames equally spaced around
the core are treated with the same exactness that is in the basic program
using the theory of reference 14. The stay frames can consist of any
combination of beam-columns and taut cables which lie in a plane but are not
inter-connected except through the core member. The core and stay frames
terminate at a single node at each end. The stayed columns are modeled
separately as substructures which can then be incorporated into the final
structure by connection of the two end nodes. If a stress analysis is made,
the axial load on any stayed columns in the structure is determined, but the
forces on individual members making up the stayed column are not. In a
subsequent eigenvalue analysis, the effect of the end forces may be included
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as discussed in section 3.4 to retain equilibrium at a node. The mode shape
in the interior of a stayed column is also not recovered but an interpolated
shape based on end point deflections and rotations is plotted.

4,5 Modeling Tapered and Stepped Members

There are several options for modeling nonuniform members as either
continuous tapered members, stepped members, or a combination as discussed in
section 3.10. In all cases the member is treated in the program as a
two-noded substructure whose stiffnesses are calculated at the beginning of
each iteration for all such members. It may be advantageous to treat a
uniform member by this approach if it appears many times in the structure at
the same length to avoid recalculation of the stiffnesses which would be done
if treated in the regular way. Members whose properties vary according to
equation (3) can be modeled using just the TAPer group. More general tapers
require the addition of the VARiation and PROfile groups. A general two~noded
substructure can be generated by linking any number and combination of uniform
and tapered members together in the STEpped card group.

4.6 Data Input
The input is free field with the following general features:
(1) Numerical data may be separated by blanks or commas.

(2) Trailing zeros on lines of data having a specified number of entries
need not be entered.

(3) Comments may be inserted on any card after inserting a $. Data may
' be resumed on the same card after a second $.

(4) A capability for generating data that repeats in a regular pattern,
such as coordinates or connectivities, is available and described in
section 4.6.5.

The input data is separated into several groups that are each identified
by a descriptive heading that precedes the numerical data. These groups may
appear in any order. Only the first three letters of each heading (unless
otherwise indicated) are used by the program so that the remaining characters
are only used as a prompt to the user. The necessary letters for each name
are identified with capital letters in this manual. Each card group
containing numerical data that may appear in a run is identified in the
following with an * preceding the heading card; each card group that is always
required in any run is identified with ** preceding the heading card.

Specific examples of most of the data input are given in the example problems
listed in tables 1 to 8.

For a given problem, the data in many of the groups is not applicable
and those groups may be omitted. Because of default values contained in the
program certain other groups may not be required. The minimum number required
are the MEMber data, SECtion properties, CONnection list, and COOrdinates. If
any of these groups is missing after all input has been read, the program’
prints a warning message and stops. In the following, the various headings
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are listed in the order that they appear in the output along with a
description of the data that is entered.

4.6.1 Analysis Control The following cards control input, output, and the

analysis options available to the user.

ECHo on

ECHo OFF
NOEcho
EXPlanation

INTeger

DEGree

PLAne frame

STRess

BUCkling
VIBration

CRIteria (One

Item

1 CF

2 FQ

3 FP

y NDIV

Input data after this card will be printed in the output exactly
as entered and will also be printed in an organized listing with
descriptive headings. Default is ECHo on.

Either card turns off printing of input data subsequent to where
the card is inserted, including the organized listing.

Causes explanatory headings to be printed at the beginning of
major tables of data appearing in output.

Coordinates given as integers that refer to the list of REAl
numbers. Without the INTeger card, coordinates are given
directly their real values under the COOrdinate heading.

Angles given in degrees for cylindrical coordinates. Without
the DEGree card, angles for cylindrical coordinates must be
given in radians.

Analysis is performed for a plane frame.

Causes stress analysis to be made. If the STRess card is
present with either a BUCkling or VIBration card, internal
member loads will be determined from the stress analysis before
the buckling or vibration analysis is performed.

Causes buckling or vibration analysis to be made. It is not
possible to execute a buckling and a vibration analysis on the
same run.

card containing 4 items of data)

Convergence factor. Eigenvalues are obtained to an accuracy of
at least 1 part in CF. Default is 1.E5.

Defines a positive trial value of first required eigenvalue or
the lower bound on range of eigenvalues or eigennumbers
depending on the value of NDIV. Default 1.

A non-zero absolute value of FP gives the upper bound on a range
of required eigenvalues or eigennumbers depending on the value
of NDIV. If FP is negative, modes will be found for each
eigenvalue found, with the exception that only one mode is found
for a group of coincident eigenvalues, Default O.

If NDIV is zero, all eigenvalues from eigennumber FQ to
eigennumber FP are found. However, if FP is also zero, the list
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of required eigennumbers is given by the EIGenvalues card group.
If NDIV is negative, all eigenvalues in the range FQ to FP are
found. If NDIV is positive, the range FQ to FP is divided into
NDIV equal parts. No eigenvalues are found, but at each point
of division, the number of eigenvalues exceeded is determined,
and modal densities are listed. Default O.

The following examples illustrate the various options.

1.E6 2.
This CRIteria card will cause all eigenvalues listed in the EIGenvalues
card group to be found with an accuracy of one part in one million starting
with a trial value of 2.

1.E4 5. 20. -1
This CRIteria card will cause all eigenvalues in the range 5. to 20. to
be found. : :

1.E5 20 350
This CRIteria card will cause eigenvalues numbered 20 to 35 to be found.

1. 2. 100. 98
This CRIteria card will cause modal densities to be found in the range
2. to 100. at intervals of 1.

EIGenvalues (Any number of cards containing integer data.)

List of required eigenvalue numbers. Used only if FP and
NDIV are zero on CRIteria card. A negative sign will cause a
mode shape to be calculated for that particular eigenvalue. If
no input is given in this group a default value of -1 will cause
the first eigenvalue to be obtained along with the mode shape.

BANdwidth optimization N

BAN ... N causes the node reference numbers to be
resequenced to reduce solution time, using option number N of
the BANDIT program. If N is omitted the recommended default
value of 2 is used. For other options see section 3.6.

SHOw resequence

Input data that has changed as a result of renumbering and
resequencing is printed with reference numbers that are used
internally in the program.

4,6.2 Structural Description The following groups of cards are used to
describe the structure and its loading. In many cases, reference numbers are
used, such as for nodes, SECtion properties, tables of REPetitive members or
SPRing connections and other similar data. In all cases these numbers may be
arbitrary and given in any order.
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*  SET (One card containing 4 items of integer data.)

Item

1 ICORD Set to 1 for rectangular coordinates; 2 for cylindrical

’ coordinates. Default 1.

2 LC Set to 0 for regular problems. A value of 1 causes all
rotational degrees of freedom of nodes to be restrained which
would be necessary for a structure having only pin ended and
cable members. Default O.

3 LR Use 1 if rotatory inertia of the members is to be allowed for in
a vibration problem, otherwise use 0. Default O.

y LS Use 1 if shear deflection of the members is to be allowed for,

otherwise use 0., Default O.
* REAl number list (Any number of cards and items of data.)

A series of real numbers that may be referenced to define
coordinates, lumped masses and inertias, and spring stiffnesses.

*% COOrdinates (Any number of cards containing data in groups of four. )
SUB N

The second heading card is optional for the final structure
where N is zero. For stayed column substructures, N is the substructure
reference number. The first item in each group of four is the node
reference number followed by the three coordinates (x, y, z or r, 8, 2)
of the node. For cylindrical coordinates, 6 may be given in degrees or
radians according to the presence or absence of a DEGree card.

If the INTeger card is present, the coordinates are given as
integers whose absolute values refer to the location of the coordinate
value in the list of REAl numbers. A negative integer reverses the sign
on the coordinate value used

Complete restraint of a group of nodes may be obtained by giving
their coordinates last. The coordinates of the grounded nodes should be
preceded by a card with the heading EARth or GROund. Alternatively, the
number of nodes having complete restraint may be specified by NE using
the RESet facility.

The rules for the coordinates of a stayed column substructure
are similar to those of the final structure with the following
additions, noting that the only stayed columns permitted are those which
are symmetric about their mid-length.

(1) Coordinates are cylindrical with the origin at the end and z along
the core toward the center of the stayed column. Only one half
(lengthwise) of a stayed column is defined in terms of the r-z
coordinates of one stay frame which must lie in a plane 6 = 0.
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(2) All nodes on the plane of symmetry which bisects the length of the
column must be given first in the order of decreasing distance from
the core.

(3) There must be at least two nodes on the plane of symmetry.

(4) The highest node number must correspond to the end which is attached

: to a node in the final structure.

(5) The nodes of stayed column Substructures are not resequenced when
the BANdwidth card is present.

#% CONnection list (Any number of cards containing integers that are given as
SUB N triplets.)

The same comments apply to the SUB N card as for the COOrdinate
list. The numerical data following the heading card(s) is the
connection list, given as triplets of integers. The first two integers
of each triplet define the nodes connected, and the last integer is the
reference number of the connecting member as defined in the MEMber data
group. It is desirable to give the lower numbered node first in a
triplet and order the triplets in ascending order of lower numbered
nodes. If not entered in this order the data will be rearranged to this
order prior to any analysis. If a member connects between the basic
repeating portion of a repetitive structure and some other repeating
portion, the lower numbered node must be in the basic repeating portion.

* DOF (degrees of freedom) restrained (Any number of cards containing
SUB N integers that are given as triplets.)

Used to apply rigid or elastic constraints at specified degrees

of freedom and in vibration problems used to apply concentrated masses
and inertias.

The first integer of each triplet is a node number. The second
integer corresponds to a degree of freedom in the global coordinate
system defined in section 4.1. (A zero indicates all three translational
freedoms.) A zero value for the third integer will give complete
constraint. A positive value for the third integer will place a mass or
inertia taken from the corresponding location in the list of REAl
numbers, and a negative value will place an elastic support, with its
stiffness obtained from the 1ist of REAl numbers corresponding to the
absolute value of the third integer. For example, the following data
card

100 350 706 103 -12

will cause (1) all displacement degrees of freedom at node 1 to be zero,
(2) rotation about the y or 6 axis (degree of freedom 5) to be zero at
node 3, (3) a mass with a value given by the 6th REAl number to be
placed at node 7, and (4) the z displacement at node 10 to be restrained
by a spring with stiffness given by the 12th REAl number.

The SUB N has the same meaning as in the COOrdinate list but,

for stayed column substructures, the program is restricted to the input
of concentrated masses by the DOF card group.
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%  STAy frames (Any number of cards and items of integer data.)

Specifies the number of stay frames in each stayed column

substructure in the order of ascending substructure reference numbers.

#% MEMber data (Any number of cards each containing 7 items of integer data.)

Item

Used to describe the characteristics of each member. Each

integer after the member number refers to the reference number of the
indicated card group.

SEC

PRE

REP

OFF

SPR

SUB

Member number

'SECtion reference number

PREload or PREstrain reference number
REPetition reference number

OFFset reference number

SPRing connection reference number

SUBstructure reference number (i.e. of a stayed column, tapered
or stepped substructure). If SUB is nonzero, then SEC and PRE
must be zero but any of the other entries may have nonzero
values. A card with SUB nonzero is required for every
substructure which appears in the connection list, in addition
to the card(s) used to define section properties etc. for the
substructure or its components. :

In the previous data, a zero indicates the absence of a particular
quantity for that member.

¥% SECtion properties (Any number of cards, each containing 10 items of data.)

Item

1

EA
EIY

GJ

IP

EIX

Section reference number

Axial stiffness

Flexural rigidity about the local y axis
Torsional stiffness

Mass per unit length

Polar moment of inertia

Flexural rigidity about the local x axis
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8 CT Used to orient local member x and y axes as indicated in figure
4, If input less than one, CT is the cosine of the angle
between the local x axis and the global z axis. If local z and
global z coincide, CT is the cosine of the angle between the
local x axis and the global y axis. The algebraic sign of CT is
determined by requiring that the local y axis always form an
acute angle with global z in the first case or global y in the
second case. For cylindrical coordinates the above rules also
apply with global y replaced by global 6. If CT is an integer
equal to or greater than one, the local x axis lies in a plane
containing both the line between the nodes the member connects
and the node CT.

9 SFX Shape factor for loads acting in local x direction, i e. for
flexure associated with EIY.

10 SFY Shape factor for loads acting in local y direction.

Initially all items default to zero but it is essential that a nonzero
value of EA be input.

If EIY is zero, the member is a cable which must have tension for
vibration problems but may be unloaded for buckling problems.

If EIX is zero, EIX = EIY

M(EIX + EIY)
EA :
If SFX (SFY) is zero, SFX (SFY) = SF (See RESet card group for

definition of SF) Note that SFX and SFY are used only if LS = 1 under the
SET card ' :

If IP is zero, IP =

* PREstrains or PREloads (Any number of cards, each with 3 items of data.)

Item

1 Reference number.

2 PD Value of dead load prestrain or force (positive for tension).
If reference number is positive a strain value is input. For
thermal stress problems the input would be the thermal strain,
aAT. If reference number is negative, member axial load is
input.

3 PL Same as PD except for live loads.

* REPetition (Any number of cards, each with 4 integers. Needed only
when repetitive feature is used. )

The first number on each card is the reference number and the
next three integers indicate the number of bays in the three coordinate
directions that the final end of the member is displaced from its initial
end corresponding to Jk in equation (1).
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BAY information (One card with 6 items of data. Needed only when repetitive
- feature is used.) -

zJ(1), 2J(2), zJ(3), EN(1), EN(2), EN(3)

The ZJ(K) are the differences in the Kth coordinates between
adjacent repeating portions. The EN(K) are three numbers giving the
number of repeating portions in the three coordinate directions over
which the mode is repetitive corresponding to the Nk in equation (1).

For cylindrical coordinates, ZJ(2) is given as an integer
(normally EN(2) for a frame that extends around the complete circumference)
and the actual ZJ(2) is calculated as:

_ 2%
MODes (One card with 6 integers. Needed only when the repetitive feature is

used.)
NL1, NU1, NL2, NU2, NL3, NU3

Integers defining lower and upper bounds of the harmonic
response n, in the three coordinate directions. See equation (1).

OFFsets of members (Any number of cards, each with 8 items of data.)

Item
1 Reference number.

2 JCORD A value of 1 indicates that the offsets of the member end from
the node are given in a right hand rectangular coordinate system
that is aligned with the global coordinate system. A value of 2
indicates the local system defined in section 4.1 is used where
the 2z axis is along the line connecting the nodes.
3 to 5 E1(K) Offset in the kth coordinate direction of initial end of a
T member .

6 to 8 E2(K) Similar to E1(K) but for final end of a member,
SPRing connections (Any number of cards, each with 13 integers.)

The first integer on each card is the reference number and the
next twelve indicate the presence of spring connections corresponding to
the twelve degrees of freedom of the member in the x, y, z local
coordinate system. The first six integers refer to degrees of freedom at
the initial end as defined in section 4.1 with the last six applying to
the final end. A zero indicates a rigid connection, a,ponzero integer J
indicates a spring having a stiffness taken from the J entry in the
list of REAl numbers. Pins and sliding connections can be modeled by
using springs of zero stiffness.
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*

LOAds (Any number of cards, each having 4 items of data.)

Will be used only if a STRess card is present.

Item
1 Node reference number at which dead and/or live load is applied.
2 Load direction. Values 1, 2 and 3 are forces, 4, 5 and 6 are
moments, in the usual order of global coordinates (x y and z or
r, 6 and z)
3 VD Value of dead load.
y VL Value of live load.

ACCeleration (One card containing three items of data)

Will be used only if a STRess card is present.
Item )

1 to 3 Acceleration components in the global x, y, and z
directions respectively. Defaults are 0., 0., 386

The ACCeleration card causes the effects of an applied
acceleration (such as gravity) to be included in the stress analysis.
If the card is input without data, the default values are used

TAPer (Any number of cards, each with 7 items of data.)

Item

1 Reference number. Since the member being defined is a

’ substructure, this is a substructure reference number which must
not duplicate a stayed column or other substructure reference
number. This reference number appears as the SUB entry on the
MEMber data card that is referenced by the CONnection list.

2 Member reference number that defines SECtion properties,
PREload, and SPRing connections. (Other options on MEMber card
are not allowed. )

3 L Length. All occurrences of a substructure must have the same
length., If the item is entered as zero, the length will be
calculated from the first appearance in the CONnection list.
However, a length must always be specified if the substructure
forms part of a STEpped substructure.

Yy NEL If positive, defines the number of elements which will be used
to approximate the tapered member. If negative, exact
stiffnesses will be calculated with SECtion properties varying
as in equation (3)
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5 N Exponent n used in equation (3) defining property variation. N
is ignored if C 5 -1, ' .

6 c If C > -1, taper ratio ¢ used in equation (3).
' If C £ -1, then absolute value of C is reference number of
VARiation group used to describe a general taper.

7 Length ratio used to subdivide member length unequally for the
general taper capability. A value of 1 or 0 will result in
elements of equal length. Otherwise the value must lie between
0 and 2, and represents the ratio of the length of the first
element to the average length (L/NEL). The lengths of
subsequent elements vary arithmetically.

VARiation (Any number of cards, each with 9 items of integer data.)

Used to specify general variation of section properties and
axial load.

Item
1 Reference number.

2to 9 A nonzero input refers to a PROfile reference number that will
define the variation of section properties and axial load in the
order EA, EIY, GJ, M, IP, EIX, PD, PL. If zero, the
corresponding property or load is taken as constant.

PROfile (Any number of cards and items of data.)

Used to define an equation which describes the variation of a
section property or load along the length of a member. The resulting
value is multiplied by a base value given in the SECtion properties or
PREload card groups.

Item
1 Reference number.

2 to 2J+1 Pairs of numbers a,, b, such that if the reference number is
positive, the profile is given by

Jd

L ai(%)bi
i=1

where z is distance along a member (measured from the lower
numbered of the connected nodes) and L is member length. If the
reference number is negative, only one pair of numbers is
entered and the profile is generated by raising profile a, to
the power bl' .
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¥ STEpped (Any number of cards and items of data.)

Item

1

2...

Used to link several previously defined substructures that are

Jjoined end to end to form a new substructure.

Reference number of new substructure being created. This
reference number appears as the SUB entry on a MEMber data card
whose member number is used for the appearance of the
substructure in’the CONnection list.

Reference numbers of substructures defined either in the TAPer
card group or previously in this card group. If a minus sign
precedes a substructure reference number, the substructure is
rotated 180 degrees such that its initial and final ends are
reversed.

4.6.3 Plotting The following cards are used to obtain plots of the undeformed

structure and modes from the eigenvalue analysis.

* PLOt (Two cards required, or one card with value of IPLOT as only entry if

-default values used for other variables.)

IPLOT, VERT, HORIZ, INTM, IDUP (First card, 5 items of data.)

IPLOT

VERT

HORIZ

INTM

IDUP

=0 no plotting done

=i undeformed structure and mode shapes plotted as solid
) lines

= 2 undeformed structure plotted as dashed lines, mode shapes
as solid lines

=3 mode shapes only plotted as solid lines

-5 undeformed structure only plotted, no analysis made.

Vertical size of plot. Default value set in program at
installation depending on scale of plotting device.

Horizontal size of plot. Default same comment as for VERT.

Number of interior points in each member for which the mode
shape is calculated and plotted. For substructures, the
interior shape is interpolated from end point displacements and
rotations and is shown with a short and long dashed line.
Default O. :

Structure repeats in a regular pattern for IDUP = 0; repeats in
a staggered pattern for IDUP = 1. Default O.
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VIEW(1), VIEW(2), VIEW(3), AMP, IVERT, ROT (Second card, 6 items of data.)

VIEW(I) Global x, y and z coordinates which locate the viewpoint from
A which the structure is seen. Rectangular coordinates are always
used for VIEW(I), even if analysis is done in cylindrical
coordinates. -Defaults are 1 1 1.

AMP Controls amplitude of mode shape relative to structure.
: Ordinarily is of order one. Default 1.

IVERT Absolute value of IVERT is the global axis which will be
vertical on plot before rotation by angle ROT. A positive value
of IVERT gives a perspective projection from the view point. A
negative value of IVERT gives a projection parallel to a line
from origin to viewpoint. Default -3.

ROT Angle in degrees by which the IVERT axis is rotated on plot.
Positive in counterclockwise direction. Default O. :

4.6.4 Reset Capability A number of variables are seldom changed for different
analyses and take on default values assigned in the program. If required they
can be changed by using the RESet card. In addition, the variables in the
CRIteria card group can be changed from their default values by the RESet card
so it is not mandatory that the CRIteria data be input. If only a few
variables need changing, it may be more convenient to use RESet cards. The
variables that may be input through the RESet capability are listed below
along with their default values. Users may wish to alter the source code
(SUBROUTINE REED) to change the ‘default values to others that are more
commonly encountered. The RESet cards can appear more than once at arbitrary
locations in the input. Care should be taken that subsequent data input does
not overwrite a desired RESet value. The last occurrence of the data
following a RESet card controls what the program uses.

RESet (Special card(s) to change certain variables fram their default

values.)
VARIABLE DEFAULT

CF 1.E5

FQ 1.

FP 0.

NDIV 0

IDBUG 5

IOFILE (Initialized in main 0 VAX
program) 1 CcDC

IQL 0

PDELTA 0.

NE 0

PR .3

SF 5/6

SMASPR 0.

NIMAX 9999

NDMAX 5

NFMAX 30
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IDBUG

IOFILE

IQL

PDELTA

NE

PR

SF

A description of the variables not already defined is given below.

IOFILE
0
1
2

Causes certain diagnostic printing as indicated in the beginning
of the source code.

Causes mode finding to be in core or out of core as follows:

In core. Recommended for virtual memory machines
Uses direct access files
Uses sequential files

A nonzero value of IQL causes modifications of the stress
analysis to be made as described in section 3.4, A value of 1
causes the Q/L terms to be added to the stiffness matrix. A
value of 2 or 3 causes the stress analysis to be made with axial
member stiffnesses only and all joints pin connected. For

IQL = 2, all member preloads are ignored thus assuring that no
transverse shear forces due to axial loading are present. This
is required to ensure perfect (to machine accuracy) equilibrium.
For IQL = 3, the member preloads are included in the stress
analysis which may result in transverse shear forces to maintain
equilibrium. No correction or change in the stress analysis is
made if IQL = O.

During an eigenvalue analysis all axial forces are multiplied by
1 + PDELTA where the plus sign applies to tension forces and the
minus sign applies to compression forces, see section 3.4,

Number of earth or grounded nodes which must be given last in
the coordinate list.

Poisson's ratio.

Global shape factor, used for any member that has a zero shape
factor in the SECtion properties input.

Note that the transverse shear stiffness is given by

SMASPR

NIMAX

SF*EA
2(1+PR)

A spring of stiffness I*SMASPR will be placed at each
translational degree of freedom where I ranges from 1 to 3
corresponding to the degree of freedom number. Used in
structures having rigid body degrees of freedom to prevent
ill1-conditioning of the stiffness matrix. If modes are required
and SMASPR is nonzero, the convergence procedure will determine
as accurately as possible a set of linearly independent modes
for the nearly zero eigenvalues.

Maximum number of iterations allowed is absolute value of NIMAX.
If negative, the program prints the CPU time for each iteration.
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NDMAX These variables affect the performance and storage requirements
NFMAX of the accelerated convergence procedure. If the default values
- are inappropriate for a particular problem, the program will
print an explanatory message suggesting alternative values.

The default value of any of these variables may be changed with a RESet
card. For example, CF and PR can be changed as follows:

RESET
CF = 1000. PR = .25

The = sign may be omitted if desired and data may appear on several
lines. '

4.6.5 Automatic Data Generation Additional cards may be generated from any
input card by using the following format. If the items on an input card are
X1 Xo x3, .., then the sequence of cards

*1 I N
= (A1x1) (A1x2) (A1x3) e
= (A2x1) (A2x2) (A2x3) cose
= (a8 x,) (A X)) (Amx3)
== (n,)
== (né)

== (nm)

produces n1x n2 b'¢ ...nm cards. First the values of x1 are given and then

incremented n, -1 times by A All of these cards are incremented n -1 times

1 171° 2 .
by A.x. and so on. Several examples of the use of this input are given in the
example problems.

X

271

If the letter C precedes a Ax, a pattern where members form a closed
loop will be generated as indicated in figure 5. The last item generated is
x-AX rather than x+{n-1)Ax which would be the case if the C were absent.

An additional feature allows modification of the size of the increments
as well as the number of times they are executed. If the sequence xly is
enclosed by parentheses where x and y are numbers, the number x is incremented
by y after each use. This facility can be used to generate triangular grids
as shown in figure 6. By changing three numbers which are the number of nodes
and members on a side, any size structure can be generated.
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5 EXAMPLE PROBLEMS

The input requirements for several problems that illustrate most of the
capabilities of the program are given in the following sections. For each
problem, the input data file is given along with critical output that can be
checked by a user duplicating the case at his own installation.

5.1 Simply Supported Stepped Beam

This example illustrates the basic input requirements of the program.
The input data file is shown in table 1. Comments (text preceded by $) are
used as proampts to identify various aspects of the input and are often useful
when modifying data for a new problem. It is not necessary to enter zeros at
the end of a data line that has a prescribed number of input items such as for
SECtion properties. Here the last six items are not entered causing zeros to
be input for these quantities. The zeros then cause the default values for
IP, EIX, SFX, and SFY to be used. The structure is a simply supported planar
beam having a change of beam properties occurring at a point 40 per cent along
the length. In addition to the card PLAne frame, it is necessary to restrain
the out of plane degrees of freedom at all nodes. This has been accomplished
by a card that treats node 1, followed by cards employing the automatic data
generation capability of the program to restrain all nodes. The input load is
such that the buckling eigenvalue would be 1, if the properties were uniformly
those of the more flexible portion. The eigenvalue is about 29 per cent
greater than 1. and a plot of the mode shape shown in figure 7 shows less
deflection of the stiffer left end of the beam. Note that it was not
necessary to subdivide the beam into several elements to obtain the exact
answer, and that the interior mode shape was also recovered exactly and
plotted at ten interior points for each element of the beam by specifying
INTM = 10 under the PLOt heading in the input. This problem could have been
worked by creating a substructure consisting of the two different members but
the interior mode shape would be approximate. The effect of transverse shear
deformation can be included by adding a SET card with LS = 1 to the data of
table 1, The result for this case is an eigenvalue of 1.2852.

5.2 Simply Supported Tapered Beam

This example is identical to the previous one except the beam is
tapered. The properties at each end are identical to that of the previous
problem with a linear variation of area and a cubic variation of inertias
along the length. This is accomplished by the card group TAPer and the use of
a single data card in the SECtion group and two data cards in the MEMber card
group as shown in table 2. The eigenvalue for this case is 2.9406.

5.3 Truss with Central Load

This example illustrates that the stress analysis capability of the
program provides the member loads used in the subsequent buckling analysis.
The input data file is shown in table 3. The structure and loading is shown
in figure 8(a). Extensive use of the automatic data generating capability of
the program has been used to generate the geometry and connectivity of the
structure. Changing just a few numbers that have to do with the number of
bays of the structure is all that is required to generate a structure of any
number of bays, and no additional lines of data are needed. The buckling mode
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shown in figure 8(b) shows that lateral instability of the upper compressive
cord of the truss dominates. Due to round-off, the stress analysis gives very
small axial forces in members that are actually unloaded. A diagnostic

message is printed saying that these forces have been ignored in the buckling
analysis.

5.4 Tower with Stayed Columns

This problem is identical to example 4 of the original BUNVIS user's
guide (ref. 1). The input file is given in table 4. The coordinates are
given as integers referring to the list of REAl numbers which requires
inclusion of the INTeger data card in the input. The legs of the tower, shown
in figure 9(a), are stayed columns of the two different types shown in figure
9(b). The connectivity and coordinates of the stayed columns are identified
by cards beginning with SUB. The two buckling loads calculated are 1.7944 and
2.5205. The data, taken from reference 1, was not of sufficient accuracy that
the length of the stayed columns matched to a high precision the distance

between the connected nodes. A message indicating this discrepancy is part of
the printed output.

5.5 Frame with Stepped and Tapered Members

This problem illustrates the input for stepped and tapered members
including the specification of the orientation of the principal axes of
members with unequal flexural rigidities. The bandwidth reduction feature has
also been implemented for this problem. The input data file is shown in
table 5 and the layout of the structure is shown in figure 10. It has a plane
of symmetry but different means of specifying a member that appears in two or
more different locations are used in the input. For instance the four tapered
legs are specified four different ways: exact tapers and approximate profiled
tapers, each with the small end first and also with the large end first. The
substructuring capability is used to reverse members which were specified with
their small end first. The two stepped members are specified in one case by
introduction of two extra nodes (nodes 3 and 5 in figure 10) and in the other
by the substructure method. In addition, the local x and 'y axes for these
members have been interchanged but accounted for by specifying CT as the
cosine of the angle between local x and global z as either 0. or .8. This
angle is more difficult to calculate for the diagonal members so the
alternative input is used which defines a third point given by a node number
that lies in a plane containing the member longitudinal axis and the local x
axis. The input data file would be much shorter and simpler if each unique
member were specified only once in the most direct and simplest way rather
than being duplicated many times in order to illustrate the capabilities of
the program. The vibration modes show proper symmetry characteristics which a
user can check, indicating the correctness of the different ways of specifying
the member properties. In addition, identical members with different means of
definition can be interchanged in the connection list without altering the
fundamental vibration frequency of 1.1043. '

5.6 Hexagonal Frame
The repetitive capability of the program is illustrated in this example

which is discussed in detail in reference 16. A plan view of the repeating
portion and various vibration mode responsés of the complete structure are
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shown in figure 11. The input data file is given in table 6. Only inplane
modes were obtainéd. The free vibration response is desired so none of the
three inplane degrees of freedom are suppressed by the input. Using the n of
equation (2), one of the rigid body modes occurs in the n = 0 harmonic and the
other two are for n = 1. Since eigenvalues occur singly for n = 0 and in
pairs for n = 1, all rigid body modes are obtained for a planar structure in
the first eigenvalue of these two harmonics. By specifying eigenvalues
starting at two under the EIGenvalues card, only elastic modes are obtained
for n = 0 and 1. There are two nodes and two members in the repeating
portion. The additional data required for repetitive structures is under the
BAY information card, the MODes card, and the REPetition card. The ZJ(2) is
the width of one bay in the second or 8 coordinate direction. For cylindrical
coordinates, rather than give the angle directly, the angle is determined from
2n/2J(2) or 2n/6. The EN(2) is also 6. corresponding to the number of bays
around the circumference to form the complete structure. The data under MODes
specifies that results for harmonics from 0 to 1 will be determined. The data
under REPetition specifies that the final end of member two is one bay removed
from the basic repeating portion in the negative 6 direction. For the modes
involving primarily cable response (frequencies of 14,7 and 29.5 on figure
11), the input of AMP = 1. in the PLOt card group results in very large
plotted deflections for the interior of the cable because normalization is
based on maximum rotation which is essentially zero. To get acceptable
results for such cases, a much smaller value of AMP is required that can be
determined by trial and error. :

5.7 Cable Stiffened Ring with Bicycle Spoke Lacing

This example problem is similar to that of reference 16 except that the
hub area is modeled with eccentric connections to the spokes in order to
illustrate that capability. The repeating portion and the complete structure
are shown in figure 12, The input data is given in table 7. Additional
features of this problem are a stress analysis of a repetitive structure due
to pretension of the spokes and the use of the SMASPR input to remove
ill-conditioning that might occur in the buckling analysis of a free structure
with self equilibrating member loads. This problem gives a very low buckling
load in harmonics 0 and 1 due to destabilizing forces resulting from a small
error in equilibrium when considering only axial forces as discussed in
section 3.4. The structure cannot be analyzed considering members as pin-
ended because it has fewer members than are required for a statically
determinate truss. Since the axial forces from the stress analysis are very
close to being in equilibrium at each node, the PDELTA correction with a value
of .01 was used to remove all low eigenvalues associated with rigid body
modes. Angular coordinates are given in degrees by using the DEGree card.

The values of the offsets are given in global coordinates (JCORD = 1). The
offsets are at the final end of the cable so appear as the last three numbers
on each card. The values of the offsets are given by

E2(1) =r cos 8
E2(2) =r sin @
where r is the radius of the hub where all spokes are attached and 6 is the

angular coordinate of the point of attachment. The hub attachment of each
spoke either leads or lags the rim attachment by 80°. Determining the lowest
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buckling load in harmonics 0 through 4 assures that the lowest buckling load
of the complete structure has been found, which for this problem is 12. 961 for
ns= u

5.8 Simply Supported Hexahedral Truss Platform

The repeating portion and the structure to be analyzed are shown in
figure 2. The input data is shown in table 8. This problem illustrates a
structure that is repetitive in two directions and contains pin-ended members.
It is desired to have simply supported boundary conditions for a square
platform with 8 bays on a side. Nodes indicated by dots are along the lines
of simple support. Modes that repeat over 16 bays produce simply supported
boundary conditions for an 8-bay platform. This platform has symmetry such
that modes corresponding to harmonic m, n have the same frequency as harmonic
m, -n. It can be shown that these two modes can be combined to give simply
supported boundary conditions. If the stiffening was skewed or biased in one
direction, or had loadings been present that cause asymmetrical member forces,
the frequency for the m, n mode would not be equal to the m, -n mode and the
two modes could not be combined. The mode would exhibit skewed nodal lines
that would not conform to the desired rectangular boundaries.

There are four nodes in the repeating portion and the connectivity is
such that some members project beyond the rectangular boundary of the complete
structure which was generated by indexing the repeating portion eight bays in
each direction. All members are pin ended so that SPR in the MEMber
properties is 1 referring to the SPRing connections card. The data following
the SPRing card indicates spring connections at five rotational degrees of
freedom. The value of the spring constant is taken from the first number in
the REAl number list which gives a zero spring stiffness. One torsional
degree of freedom is rigidly connected to prevent zero frequency torsion modes
of individual members from appearing. A small nonzero IP for each member
prevents the torsional inertia from affecting the results. The parameter LC
under the SET card is set to 1 to restrain all global rotational freedoms
since the individual members have no rotational stiffness.

The complete structure cannot be generated by simply indexing the
repeating portion independently in the two inplane coordinate directions.
Similar nodes occur in a staggered pattern on both surfaces. To obtain
correct plots of the structure, IDUP in the PLOt card group must be set to 1,

The first vibration mode and frequency are calculated for harmonic
responses one through three in the x coordinate direction in combination with
each harmonic response one through five in the y coordinate direction. The

frequency for the fundamental mode (first harmonic in both directions) is
4, 4439,
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Table 1.- Input For Simply Supported Stepped Beam

$ EXAMPLE 1: SIMPLY SUPPORTED STEPPED BEAM

PLANE - FRAME .

BUCKLING

EXPLANATION $EXPANDED DESCRIPTION OF HEADINGS FOR CERTAIN OUTPUT
COORDINATES

10. 0. 0. 2 40. 0. 0. 3 100. 0. O.

CONNECTION LIST ‘

122 231

DOF RESTRAINED

100 300 $ DISPLACEMENTS AT EACH END ZERO

130 140 150 $ OUT-OF-PLANE DISPLACEMENTS ZERO AT NODE 1

$ THE FOLLOWING TWO DATA CARDS WILL CAUSE THE PREVIOUS DATA CARD TO APPEAR
$ THREE TIMES WITH NODE NUMBERS INCREMENTED BY ONE TO RESTRICT OUT-OF-PLANE
$ DISPLACEMENTS AT ALL THREE NODES
= (1) (0) (0) (1) (0) (0) (1) (0) (0)
== (3)
MEMBER DATA
$REF NO SEC PRE REP OFF SPR SUB
1 1 1
2 2 1
SECTION PROPERTIES
$REF NO EA EIY GJ M IP EIX CT SFX SFY
1 1. 1. .5~

2 2. 8. &,
PRELOADS
$REF NO PD PL
-1 0. -9.869604401E-4
PLOT :
$IPLOT VERT HORIZ INTM IDUP
2 y, 6. 10
$VIEW(1) VIEW(2) VIEW(3) AMP IVERT ROT
0. 0. 1. 3. -2

32




Table 2.~ Input For Simply Supported Tapered Beam

$ EXAMPLE 2: SIMPLY SUPPORTED TAPERED BEAM
PLANE  FRAME ’

BUCKLING -

COORDINATES

1 0. 0. 0. 2 100. 0. O.

CONNECTION LIST

121

DOF RESTRAINED

100 200 $ DISPLACEMENTS AT EACH END ZERO

1 30 140 150 $ OUT-OF-PLANE DISPLACEMENTS ZERO AT NODE 1
= (1) (0) (0) (1) (0) (0) (1) (0) (0)

== (2)

MEMBER DATA
$REF NO SEC PRE REP OFF SPR SUB
1 6 0 0 o0 o 1
2 2 1 ;
SECTION PROPERTIES
$REF NO EA EIY GJ M IP EIX CT SFX SFY

2 2. 8. &,
TAPER
$REF NO MEMBER LENGTH NEL N C LENGTH RATIO
1 2 0. -1 1. -.5
PRELOADS - -
$REF NO PD PL

-1 0. -9.869604401E-4
PLOT : ’
$IPLOT VERT HORIZ INTM IDUP
2 4, 6. 10
$VIEW(1) VIEW(2) VIEW(3) AMP IVERT ROT
0. 0. 1. 3. -2
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Table 3.- Input For Truss With Central Load

$ EXAMPLE 3: TRUSS
STRESS

BUCKLING
COORDINATES

WITH CENTRAL LOAD

10. 0. 0. 20, 10. 0. $ COORDINATES OF NODES 1 AND 2
= (2) (10.) (0. ) (0.) (2) (10.) $ INCREMENT NODES BY 2, AND X BY 10

== (11)

CONNECTION LIST

1 31

= (1) (1)

= (2) (2)

== (2)

= (10)

31

(2) (2)

== (5)

11 141

= (2) (2)

== (5)

121

= (2) (2)

== (11)

DOF RESTRAINED
100 200
2100 2200
MEMBER DATA

11

SECTION PROPERTIES
1 2.E9 2.ET 1.E7
LOADS

$NODE DIRECTION VD
12 2 0.
PLOT :
2 4, 6.5

-1. .5 -1. 5, =2

[\ VI

$ REPEAT 11 TIMES

$ CORD MEMBERS

$ LEFT DIAGONALS
$ RIGHT DIAGONALS

$ VERTICALS

VL
-1.E5

Table 4.- Input For Tower With Stayed Columns

$ EXAMPLE 4: TOWER WITH STAYED COLUMNS

INTEGER
BUCKLING
SECTION PROPERTIES

$REF EA EIY GJ MASS/L POLAR I/L EIX CT SFX SFY

.2UE10 .38E8 .3ES8
.35E9 .13E6 .1E6

.64E9 .TTE6 .6E6"

.22E9

.TUE8

.15E9

.T5E8

.1E10 .U4E11 .T75E9

e B NG N =R UV I \O I
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Table 4.- Concluded

EMBER DATA
1

M
1
2
= (1)
9

"
O~~~ =X
—

)
7)
00001

10000002

PRELOAD
-1 0. =-.1E7
REAL "NUMBERS
0. 2.3817 47.6182 30.8040 17.9898 16.6666 15 3434
3.1945 5.75 49,9999 99.9998

12.5 10.83 21.65 99. 2 6. 25 .5E5 .1E6
EIGENVALUES
-1 =2
CONNECTION LIST
SUB 1

133 14
571 67
COORDINATES
SUB 1
19110 21110 3113 4114 5115 681 6 7 1 17 8 1 11
CONNECTION LIST

7 166 231 341 451 465 562
2 684 781

SUB 2

122 143 167 186 232 242 351 453 561
671 685 782 T7T91 892 8104 9101
COORDINATES

SUB 2

19110 22110 31110 4213 5113 6114
7115 8816 9117 10111

CONNECTION LIST

128 138 149 1 510 238 2410 269 359 3610
COORDINATES ’ ’
1-121415 21115 3121415 4 —16 13 1 51 141

EARTH NODE

6 16 131

DOF RESTRAINED

41 -17 42-18 430 500

STAY FRAMES ‘

34 )

PLOT

2 4. 6. 30

3. 2. 1. 1. =3 0.
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Table 5.~ Input For Frame With Stepped And Tapered Members

$ EXAMPLE 5: FRAME WITH STEPPED AND TAPERED MEMBERS
VIBRATION ’ CC
BAND
CRITERIA
1.0E6 1.0 -4
SECTION PROPERTIES
$ EA EIY GJ M IP EIX CT
1 2.0E9 2.0E7 1.0E7 1.0E2 3.0E0 4.0E7 0. $SMALL END
2 2.2E9 2.662ET 1.331E7 1.1E2 3.993E0 5.324ET 0. $BIG END
3 2.0E9 2.0E7T 1.0E7 1.0E2 3.0E0 4,0E7T 2  $THIRD POINT NODE 2
4 2.0E9 2.0ET 1.0ET7 1.0E2 3.0E0 4.0E7 1  $THIRD POINT NODE 1
5 2.0E9 4.0E7 1.0E7 1.0E2 3.0E0 2.0E7T .8 $SMALL, X-Y REVERSED
6 2.2E9 5.324ET7 1.331E7 1:1E2 3.993E0 2.662E7 .8 $BIG, X-Y REVERSED
MEMBER DATA :
$ UNIFORM SMALL
$ UNIFORM BIG
$ EXACT C=-0.09090909
$ EXACT C=.1 TURNED AROUND
$ PROFILED C=-0.09090909
$ AUTO. PROFILED C=.1 TURNED AROUND
0 $ STEPPED SYMMETRIC
$ DIAGCONAL 1-4
$ DIAGONAL 2-6
$ UNIFORM SMALL, X-Y REVERSED
$ UNIFORM BIG, X-Y REVERSED

WO OCOoOOoON -~ X
[eNeoleolNeNel
[eNelNoNeNol
[aNeNeNeNol
OO OO0
- =N

CTION L
461 $ UNIFORM HORIZONTALS
352 561 $ EXPLICIT STEPPED SYMMETRIC SLOPING SIDE
’ $ SUBSTRUCTURED STEPPED SYMMETRIC SLOPING SIDE

8 4 $ EXACT TAPERED VERTICAL
10 6 $ PROFILED TAPERED VERTICALS

269 $ DIAGONALS
INATES
1t 0. 0. 10. 210, 0. 10. 3 0. 5. 13.75

4 10. 20. 25. 5 0. 15. 21.25 "6 0. 20. 25.

o o

1
2
3
n
5
6
7
8
9
1
1
C
1
1
2
1
n
1
C

DooUMw -3 — —=n

EARTH

7 0. 0, 0, 810, 0. O. 9 10. 20. 15. 10 0. 20. 15.
PROFILES ' '

1 1.0 0.0 -0.09090909 1.0 $ 1 - 0.09090909%Z/L

=2 1 3.0 $ (1 - 0.09090909%Z/L)**3
VARIATION .

$ EA EIYGJ M IP EIX PD PL
11 22 1 2 2

TAPER

$ MEM L NEL N c

T 1 1. -1 1 oA $ EXACT C=.1

2 2 10, -1 1 -0,09090909 0. $ EXACT C=-=0.09090909

3 1 10. 20 1 . 1. $ AUTO. PROFILED C=0.1

y 2 10. 20 0 -1 1. $ PROFILED C=-0.09090909
5 10 6.25 $ UNIFORM SMALL’

6 11 6.25 $ UNIFORM BIG
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Table 5.- Concluded

STEPPED

7 -1 $ EXACT C=0.1 TURNED AROUND

8 -3 $ AUTO. PROFILED C=0.1 TURNED AROUND
9 5 6 $ HALF OF STEPPED SYMMETRIC MEMBER
10 9 -9 $ STEPPED SYMMETRIC MEMBER

PLOT e ©o

24, 6.50

4, -2.°1. 1. -3 0.

Table 6.- Input For Hexagonal Frame

$ EXAMPLE 6: HEXAGONAL FRAME

PLOT -

2 4, 6. 30

3. 2. 1. 1. =3 0.
VIBRATION

PLANE FRAME

SET

$ ICORD LC LR LS
2

CRITERIA

$ CF FQ FP NDIV
1.E6 5.

SECTION PROPERTIES

1 2.2903E7 76.680 113.28 .8756
2 1.687E5 0 0 .008756
PRELOADS ‘

-1 -7.568

-2 7.568

MEMBER

111

2221

EIGENVALUES

-2 -3

CONNECTION LIST

121 222

COORDINATES

tTt000 2100

DOF RESTRAINED

130 140 150

250 230 240

BAY INFORMATION

$2J(1) zJ(2) 2J(3) EN(1) EN(2) EN(3)

0. 6. 0. 1. 6. 1.
MODES
$NL1 NU1 NL2 NU2 NL3 NU3 .
00 0o o 1 $RESPONSE IN HARMONICS 0, 1
REPETITION ’

$FINAL END OF MEMBER IS DISPLACED 1 BAY IN THE NEGATIVE THETA DIRECTION
10-10 a -
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Table 7.- Input For Cable Stiffened Ring With Bicycle Spoke Lacing

$ EXAMPLE 7: CABLE STIFFENED RING WITH BICYCLE SPOKE LACING
BUCKLING
INTEGER
STRESS
DEGREE
RESET
SMASPR=.1E-5
PDELTA=.01
SECTION PROPERTIES
1 .2873680E4 .0 .0 .9785800E-4 .0
.1034525E7 .44B1T75E+2 .3U4TOE+2 3522888E— .0
MEMBER DATA - :
11

OO OO0
w N -

1
1
1
01

. 5.972239166 1.0530669 10. 20 30.

ONNECTION LIST

5 146 151 235 263
Le62 565

2241 3251 4261 5113 611-3

PRESTRAINS

1 0. .0001979

OFFSETS OF MEMBERS

$ MEMBER JCORD E1(1) E1(2) E1(3) E2(1) E2(2) E2(3)

1 10, 0. 0. .05185342239 .2940753717 0
21 0. Q. 0. 0. .2986119583 0.

31 0. 0. 0. .1493059792 -.2586055418 0.
41 0. 0. 0. .1919440669 -.2287500313 O.
PLOT CARDS

$ IPLOT VERT HORIZ INTM IDUP

$ VIEW(1) VIEW(2) VIEW(3) AMP IVERT ROT
24,6.7 O :

0. 0. 1. 1. =2 0.

EIGENVALUES

-1

SET

2
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Table 8.- Input For Simply Supported Hexahedral Truss Platform

$ EXAMPLE 8: SIMPLY SUPPORTED HEXAHEDRAL TRUSS PLATFORM
INTEGER INPUT -

VIBRATION

SET

$ ICORD LC LR LS

11

SECTION PROPERTIES

1 3585000 224062.5 172304.1 .1384 ,1E-7
2 717000 44812.5 34460.8 .02768 .1E-7

3 5736000 358500. 230700. .22144 1E-7
MEMBERS

110001

-(1) (0) (0) (1) (0) (0)

(6) +

0001

0) (0) (1) (0) (0)

lI\lII
- N

(
4)
0
0
0
0
0
N

MU =W = Il —~
rwwwwwr\v

(@]
CDU K = Q&N —=Wwa23>

2122 3121 4112
ORMATION
0. 16. 16. 1.

O = QN == OO — = e = = |
o
=z,

Q.

1 NU1 NL2 NU2 NL3 NU3

0 —= X

2
PRING CONNECTIONS
0 1

0 10000111

gL WwWwnN =
I
—
—
o

0
R
0
LOT

2 4. 6. 01

1000. 1000. 100. 1. 3 0.
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(a) Column with N = 3.

(b) End views for N = 3, 4, or 5. (¢) Representative half frame.

Figure 1.- Typical stayed column substructure.
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Figure 2.~ Simply supported hexahedral truss platform illustrating
repetition in two directions.
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FINAL END

Y
P |
INITIAL END a = COS ~(CT)
p < °0°
P YG
XG
(a) CT < 1,
Z NODE CT .

FINAL END

INITIAL END

(b) CT 2 1.

Figure U4.- Local member coordinate system illustrating use of CT

ta orient the x and y axes.
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Figure 5.- Automatic generation of a closed loop structure.
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Figure 6.- Illustration of incrementing feature of automatic data
generation capability applied to a triangular grid.

43




EIGENVALUE NO. 1 L :

1.2893

Figure 7.- Buckling mode of simply supported stepped beam.

(a) Loading,

EIGENVALUE NO. 1 1.8744 .

(b) Buckling mode.

Figure 8.~ Truss with central load.
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UNDEFORMED STRUCTURE 1/1\ 2

(a) Tower configuration, (b) Stayed columns,

Figure 9.- Tower with stayed columns.
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Figure 10.- Frame with stepped and tapered members.
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Figure 11.- Vibration modes of hexagonal frame.
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Figure ?2.— Cable stiffened ring with bicycle spoke lacing.
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